# Surface charge effects on the nano-electro-osmosis

#### **Bohumir Jelinek**



# Electro-osmotic flow model



Fixed Si channel walls, innermost layer charged negatively
Dimensions of a solute region 4.66x4.22x3.49 nm, PBC x,y.
108 Na<sup>+</sup>, 38 Cl<sup>-</sup>, 2144 SPC/E H<sub>2</sub>O molecules (not shown)
R. Qiao and N. R. Aluru: Charge Inversion and Flow Reversal in a Nanochannel Electro-osmotic Flow, PRL 92 (19) 2004



BUILDING STRONG\_ ${\ensuremath{\mathbb{R}}}$ 

# **Velocity profiles**



ТАТЕ

UNIVERSITY





UNIVERSITY





UNIVERSITY

FATE

$$\mathbf{F}_d(z) = e \left[ c_{\mathrm{Na}^+}(z) - c_{\mathrm{Cl}^-}(z) \right] \mathbf{E}_{ext}$$



Stokes equation:

$$\frac{d}{dz} \left[ \eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z)$$



UNIVERSITY

TATE

$$\mathbf{F}_d(z) = e \left[ c_{\mathrm{Na}^+}(z) - c_{\mathrm{Cl}^-}(z) \right] \mathbf{E}_{ext}$$





UNIVERSITY



UNIVERSITY



FATE

UNIVERSITY

Stokes equation:  $\frac{d}{dz} \left[ \eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z)$ 





FATE

MISSIS

UNIVERSITY



UNIVERSITY



UNIVERSITY



MISSISSIP

UNIVERSITY

STATE

#### Stokes equation:

$$\frac{d}{dz}\left[\eta(z)\frac{du_x(z)}{dz}\right] = -F_d(z)$$





MISSISS

UNIVERSITY

TATE

#### Stokes equation:

$$\frac{d}{dz}\left[\eta(z)\frac{du_x(z)}{dz}\right] = -F_d(z)$$

Blue: inverse power viscosity

$$\eta(z) = \left[1 - \left(\frac{z}{h}\right)^2\right]^{-p} \eta_{\exp}$$





MISSIS

UNIVERSITY

TATE

#### Stokes equation:

$$\frac{d}{dz} \left[ \eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z)$$

Blue: inverse power viscosity

$$\eta(z) = \left[1 - \left(\frac{z}{h}\right)^2\right]^{-p} \eta_{\exp}$$





TATE

MISSIS

UNIVERSITY

Stokes equation:

$$\frac{d}{dz}\left[\eta(z)\frac{du_x(z)}{dz}\right] = -F_d(z)$$

inverse power viscosity

$$\eta(z) = \left[1 - \left(\frac{z}{h}\right)^2\right]^{-p} \eta_{\exp}$$

constant viscosity



# Zeta potentials vs. surf. charge density for uniform partial surface charge



UNIVERSITY

MD Zeta potential:



Zeta potential is proportional to the water velocity in the channel center.



# Zeta potentials vs. surf. charge density for discrete partial surface charge



# Conclusions

Demonstrated an improved prediction of velocity profile from charge density with non-constant viscosity estimated from MD simulations

Revealed the dependence of the flow on surface charge density, distribution, and ionic concentrations

