
Law Enforcement Officer Body Armor Research Program

Assessing impact of current and next generation armor designs on law enforcement officers

NIJ Body Armor: The Next Generation

Daniel Carruth, PhD Assistant Research Professor Center for Advanced Vehicular Systems Mississippi State University

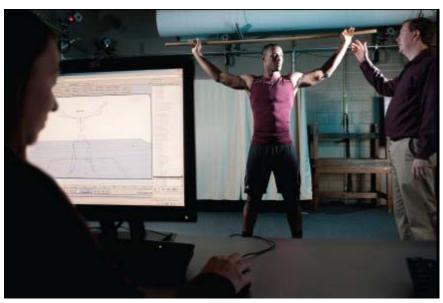
Kari Babski-Reeves, PhD Associate Professor Industrial and Engineering Systems Mississippi State University

Overview

- Human Factors @ Mississippi State
- Body Armor Issues
- Phase 1 Study
- Phase 2 Study

Human Factors @Mississippi State

- Mission
 - Maximize Performance; Improve Health and Safety
 - Encompass physical and cognitive aspects of human task performance
- Use combination of traditional analysis tools as well as state-of-the-art tools
- Multidisciplinary research engineering group
 - human factors, ergonomics, cognitive science, kinesiology, physiology, biomedical engineering, virtual environments and digital human modeling
- 8 Faculty, 1 Lab Manager, 10+ active students



Human Performance Lab

Motion capture facility

- 14 cameras, up to 4 participants @500 FPS
- 2D and 3D, static and dynamic analysis tools
- EMG measurement
- Portable eye tracker
- 8-camera video recording
- Thermography
- CorTemp core body temperature
- BioHarness HR, BR, skin temp
- Cortisol stress hormone analysis

Driving Simulation Lab

- Nissan Maxima
- 6 DoF motion base
- 180 front screen
- LCD side mirrors

- Rear screen visible in rear mirror
- Fully programmable physics-based drive simulation software
- Integrated data collection (audio/video, driver performance, vehicle stats, eye tracking data, etc)

Human Factors Research Areas

Overview

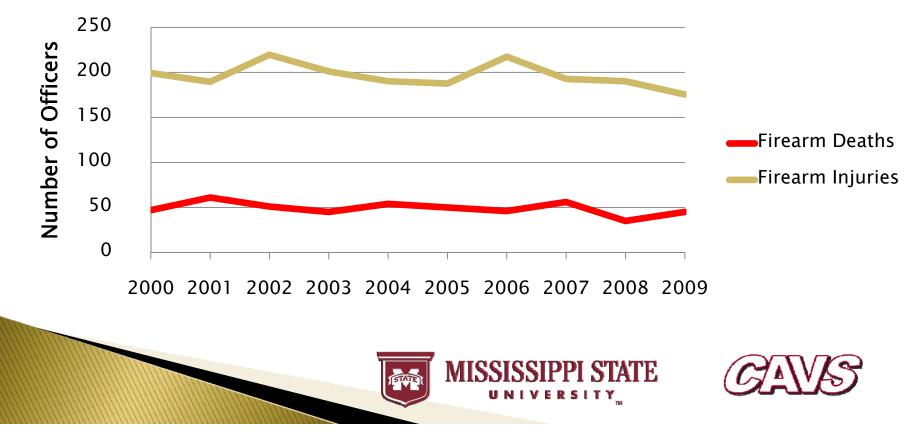
- Human Factors @ Mississippi State
- Body Armor Issues
- Phase 1 Study
- Phase 2 Study

Benefits of Current Body Armor

- 3000+ lives saved (IACP/Dupont Survivors Club)
 - Ballistic and non-ballistic incidents
- High level of threat protection (.06)
 - IIA: 9mm FMJ RN, .40 S&W FMJ
 - II: 9mm FMJ RN, .357 Magnum JSP
 - IIIA: .357 SIG FMJ FN, .44 Magnum SJHP
 - III: 7.62mm FMJ (M80)
 - IV: .30 cal AP (M2AP)
- Lightweight and flexible materials
- Durable and wearable constructions

Potential Weaknesses

- Selection and Application Guide to Personal Body Armor – NIJ Guide 100–01
 - Coverage
 - Armor Panels
 - Proper Fit
 - Comfort



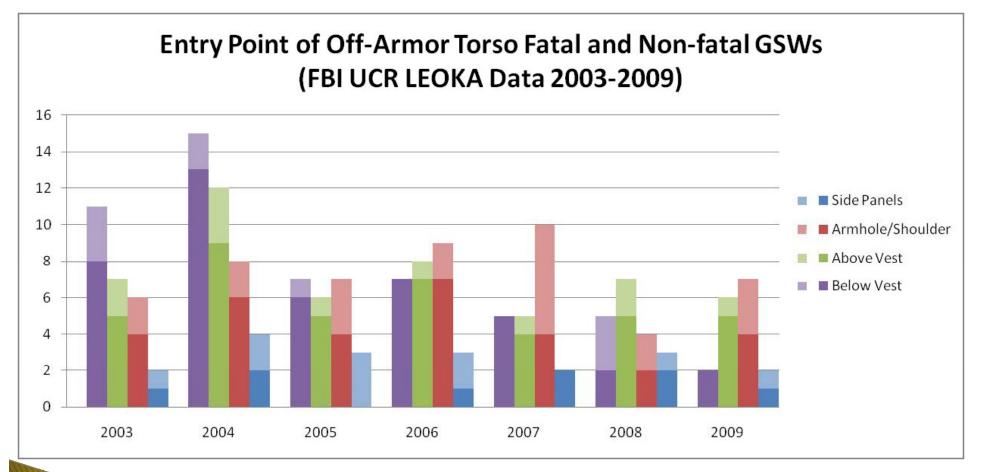
LEO Injuries and Fatalities in Assaults with Firearm

- ~200 Injuries per Year
- ~49 Fatalities per Year

FBI UCR LEOKA Firearms Fatalities and Injuries

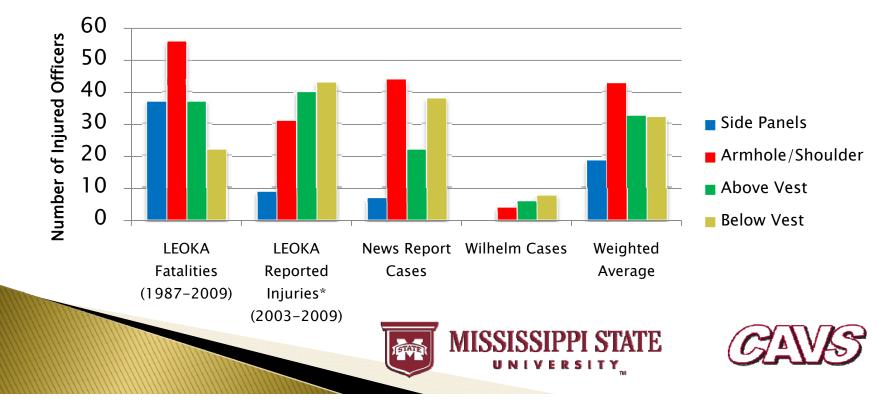
FBI UCR LEOKA Statistics

- > 2003-2009 LEO Firearm Fatalities
 - Total (N = 331)
 - 58% fatal head wound
 - 40% fatal torso wound
 - 2% below waist
 - Wearing Armor (N = 214)
 - 67% fatal head wound
 - 32% fatal torso wound
 - 1% below waist


FBI UCR LEOKA Statistics

- > 2003-2009 LEO Firearm Injuries
 - 1964 Total Reported Injuries
 - 592 Detailed Incident Reports
 - 520 Officers Wearing Armor
 - 55% injuries off-torso
 - 17% injuries stopped by armor
 - 21% injuries off-vest torso
 - 52% of torso hits were not stopped by armor

Armor Coverage and LEO Torso Injury



Additional Research Data

Dr. Marianne Wilhelm

- News reports (N = 110)
- Direct contact with survivors (N = 18)

Off-vest Torso Injury Location (by Study)

Potential Weaknesses

- Coverage
- Comfort
 - Mobility
 - Weight Distribution
 - Thermal Discomfort
 - Task Performance

Overview

- Human Factors @ Mississippi State
- Body Armor Issues
- Phase 1 Study
- Phase 2 Study

MSU Armor Study Phase 1

20 Participants

<u> 14 Tasks</u>

- Range of Motion
- Sit
- Kneel
- Slow Ingress
- Slow Egress
- Fast Ingress
- Fast Egress
- Egress and Fire
- Egress Move and Fire
- Tactical Walk
- Duck and Run
- Weapon Draw
- Weapon Reload
 - Suspect Restraint

7 Measurements

- Center of Pressure
- Heart Rate
- Skin Temperature
- Tympanic Temperature
- Task Completion Time
- Range of Motion
- User Perception

Example Tasks

Concealable Body Armor Results

- No Impact on Sit/Kneel Posture
- No Impact on Heart Rate
- No Impact on Skin or Ear Temperature
- Time to complete all 13 timed tasks ~3 seconds longer
- Reduces range of motion:
 - Back Left/Right Lateral Bending
 - 2-arm adduction (weapon stance)
 - Shoulder abduction
- Officers *perceive* slight impact on:
 - Bending backwards and forwards
 - Reaching handcuffs
 - Restraining suspects
 - Moving the upper torso

External Body Armor Results

- No impact on sit/kneel posture
- Increased Heart Rate
- No impact on skin/ear temperature
- Time to complete all 13 timed tasks ~3 seconds longer
- Range of Motion reduced:
 - All shoulder RoM
 - Back bending and rotating
 - Neck rotation
- Officers *perceive* slight to moderate impact:
 - All measures

Impact of Shoulder Pads

- Quick and dirty side-study
 - 6 student participants
 - Shoulder RoM in tactical body armor
 - With shoulder protection
 - Without shoulder protection
 - Results
 - All shoulder RoM except internal rotation reduced when wearing shoulder protection

Phase 1 Results

- Very minimal impact of concealable body armor
- Identified a sensitive battery of mobility tests
- Subjective Impact > Objective Impact

Overview

- Human Factors @ Mississippi State
- Body Armor Issues
- Phase 1 Study
- Phase 2 Study

MSU Armor Study Phase 2

2 Experiments:

Concealable vs Novel Design

Concealable vs External Carrier Design

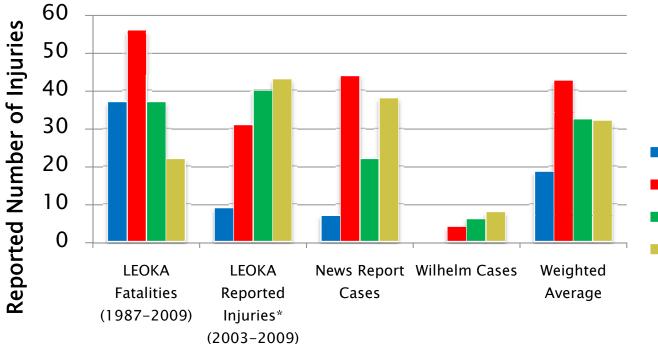
20-30 Participants per Experiment

<u>7 Tasks</u>

- Range of Motion
- Sit
- Kneel
- Egress Move and Fire
- Duck and Run
- Weapon Draw and Load
- Suspect Restraint

7 Measurements

- Heart Rate
- Skin Temperature
- Core Body Temperature
- Task Completion Time
- Range of Motion
- User Perception


VERSITY

Extended Coverage

Off-vest Torso Injury Location (by Study)

- Side Panels
- Armhole/Shoulder
- Above Vest
- Below Vest

Data Source

Novel Armor Design

- > 2 Ballistic Insert Panels
 - Shoulder Ballistic Insert (Deltoid Pad)
 - Side Panel Ballistic Insert (Rib Pad)
- Concerns
 - EBA Shoulder Pauldrons significantly reduce range of motion
 - Existing side panels impact left/right lateral bending
 - High side panels are reportedly uncomfortable
 - Small to medium sized inserts may not be sufficient for ballistic protection

External Carrier Design

- Commercially Available Carrier
- Significant interest in the LEO community in external carriers

Phase 2 Results

- Data Collection: Summer 2011
- Results by October 2011
- Final Report in December 2011

Acknowledgements

- Debra Stoe, Program Manager
 - Special thanks to the NIJ for providing support for the body armor research program (Grant #: NIJ 2007-DE-BX-K011)
- Many graduate and undergraduate students at Mississippi State University Industrial Engineering and CAVS
- Starkville Police Department and other local departments and their officers for their assistance and willingness to participate in our studies
- Dr. Marianne Wilhelm

Thank You!

Questions?

Daniel Carruth, PhD Assistant Research Professor Center for Advanced Vehicular Systems Mississippi State University 662–325–5446 dwc2@cavs.msstate.edu Kari Babski–Reeves, PhD Associate Professor Industrial and Engineering Systems Mississippi State University 662–325–1677 kari@ise.msstate.edu

